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ABSTRACT

The following type of problem arises in practice: in a node-weighted

graph G, find a minimum weight node set that satisfies certain conditions

and, in addition, induces a perfectly matchable subgraph of G. This has led

us to study the convex hull of incidence vectors of node sets that induce

perfectly matchable subgraphs of a graph G, which we call the perfectly

matchable subgraph polytope of G. For the case when G is bipartite, we

give a linear characterization of this polytope, i.e., specify a system of

linear inequalities whose basic solutions are the incidence vectors of

perfectly matchable node sets of G. We derive this result by three different

approaches, using linear prograuming duality, projection, and lattice

polyhedra, respectively. The projection approach is used here for the first

time as a proof method in polyhedral combinatorics, and seems to have many

similar applications Finally, we completely characterize the facets of

our polytope, i.e., W separate the essential inequalities of our linear

defining system from the redundant ones.
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THE PERFECTLY MATCHABLE SUBGRAPH POLYTOPE

OF A BIPARTITE GRAPH

by

Egon Balas and William Pulleyblank

1. Introduction

Given a graph G - (VE), it is often of interest to identify those

node sets of G that are perfectly matchable, i.e., those S V such that

< S > , the subgraph of G induced by S, has a perfect matching. We call

the convex hull of the incidence vectors of perfectly matchable node sets

of a graph G, the perfectly matchable subgraph polytope (PMS polytope) of G.

The identification of the perfectly matchable node sets of a graph G

would of course become much easier if the PMS polytope of G could be linearly

described, i.e., if one had a system of linear inequalities whose basic solu-

tions are precisely the extreme points of the PMS polytope of G. The existence

of such a linear system follows from the by now classical result that the

convex hull of a finite set of points in 1tn is the intersection of a finite

number of halfspaces inR ', i.e., the solution set of a finite system of

linear inequalities in n variables. But the identification of such a linear

system defining a polytope given by the set of its extreme points (that are

either explicitly listed or specified by some definition, like here) is

usually a hard task, which has so far been solved only for a few cases. In

this paper we give such a linear characterization of the R4S polytope of

a bipartite graph. The case of a general graph will be addressed in another

paper.

The question examined here arose in the context of a real world

problem that had to do with the optimal scheduling of drivers for a municipal



bus company. This particular application, which gave the initial motiva-

tion for our research, is described in section 2 of the paper. Section 3

introduces the system of linear inequalities defining the FMS polytope of

a b.partite graph and gives a first proof of the validity of this linear

characterization, based on linear programming duality theory. Section 4

gives an alternative proof, using a projection technique that is of interest

in itself, since it may serve as a proof method in situations analogous to,

but different from, the one examined here. Finally, section 5 gives a third

proof, based on the theory of lattice polyhedra.

Section 6 of the paper focuses on the question of redundancy in the

system introduced in section 3, and gives a complete characterization of

the facets of the PMS polytope of a bipartite graph.

2. Motivation: A Bus Driver Schedulina Problem

The following problem was brought to our attention by Mr. A. Foes

of the Operations Research group of Nederlandse Spoorwegen, the Dutch

Railway Company.

A municipal bus company had to schedule the tours of duty of its

drivers, so as to cover a daily set of trips to be executed. A set covering

approach was used, i.e., the problem was formulated as

min(cxlAx > e, x c JO,l£n),

where A is an m X n 0-1 matrix whose jth column represents a potential

daily (tour of) duty for a driver, with a, 1 if duty j covers trip i,

aij - 0 otherwise, while cj is the cost of duty J, and e - (I,...,l). In

a typical case the matrix A had about 150-200 rows and 3000-4000 columns.

However, the way the columns of A, i.e., the potential duties, were

generated, suggested another approach. Initially, a set of "early parts"

......................
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(morning half-tours) and "late parts" (afternoon half-tours) of duty were generated

independently of each other, then all the compatible early part-late part

pairs were explicitly generated as potential full day duties. The number

of early parts and late parts was typically about 150 and 200 respectively,

and the 3-4000 columns of A arose from the fact that only 10-13% of the

30,000 pairs were compatible (because of starting and ending properties in

space and time). If the number of early parts and late parts is n1 and 29

respectively, and the ratio of compatible early part-late part pairs to all

such pairs is r, then n - r X n1  n2; i.e., n is usually much larger than

al + n2.

1 1 (a I) and A2  (a2 )Now let A (ai)iibem x aand mX n2 matrices,

respectively, defined by

1 t l if early part j covers trip i

0 otherwise

and

a (1 if late part j covers 
trip i

a 10 L otherwise,

and let c1 and c2 be the cost vectors of early parts and late parts,

respectively. Further, let G a (V1 UV 2, E) be the bipartite graph whose

node sets V1 and V2 correspond to the early parts and the late parts,

respectively, and whose edges correspond to compatible early part-late

part pairs. Then the above problem can be reformulated as follows:

n l x2

(i) Find x1 [O,n1 and x [0,12 to

(2.1) minimize c 1 C x2

subject to

(2.2) Alx I + A2x > e
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and

(2.3) (X1, x2) is the incidence vector of some S 9V 1 UV 2 such that

< S > has a perfect matching.

(ii) Find a minimum-weight perfect matching in the graph < S >

with edge-weights

cii M ci + ci, (ij)sC.

Here, as before, < S > denotes the subgraph of G induced by

the node set S.

Problem (ii) is of course polynomially solvable; whereas problem (i)

replaces the original 3-4000 variable set covering problem by a 350-variable

set covering problem with side condition (2.3).

The solvability of the problem thus hinges on whether one can con-

veniently represent condition (2.3).

3. A Linear Characterization of the PMS Polvtope

Let G = (V1 UV2 , E) be a bipartite graph with parts V1 and V2, i.e.,

with node set V V1 UV2 and edge set E such that every ecE joins some node

of V1 to some node of V2.

Let 7(G) be the family of perfectly matchable node sets of C, i.e.,

7A(G) = (S aV < S > has a perfect matching).

For any S QV, the incidence vector (characteristic vector) of S is

x c0,li) I V I such that x 1 - , jeS, x - 0, JcV'\S. Let .(G) be the set of

incidence vectors of members of '(G), and for any set T, let cony T denote

the convex hull of T.

Our objective in this section is to give a linear system of inequali-

ties defining cony 'W(G), i.e., the ThS polytope of G.
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Whenever it is not confusing, we will write ? for O(G) and Z for Z(G).

Many problems involving matchings, in particular in bipartite graphs,

can be shown to be special cases of certain matroid problems. For instance,

if G - (V1 UV 2, E) is the bipartite graph introduced above and for k = 1, 2,

Sk is the family of those edge sets that meet every node in Vk at most

once, then the system Mk - (E, Jk) is a matroid; and the intersection of

the two matroids M1 and M2 is the independence system (E, J1 nf2), where

.91 nJ2 is simply the family of all (not necessarily perfect) matchings

in G. The matching polytope of G is then the convex hull of incidence

vectors of all members of Jl n 2 n

Another example, more closely related to our problem is the following.

In an arbitrary graph H with node set N, let .3 be the family of those sub-

sets of N covered by some matching. Then the system (N, J), as shown by

Edmonds and Fulkerson [], is a matroid.

In such cases as the above, results on matroid polyhedra due to

Edmonds [2, 3] lead to linear characterinations of the type that we are

interested in. However, these results are not applicable to our case, since

the PMS polyhedron of a graph (bipartite or not) does not have a matroidal

structure. To see this, it is sufficient to recall the fact that every

S 04(G) is of even cardinality.

We now briefly state our notational conventions. An edge joining

nodes i and j is denoted (i,j). For S, TQV, the set of edges joining nodes

in S to nodes in T is denoted (S,T). For SCV, -(S) denotes the set of

nodes adjacent to some node in S. Clearly, if SYV 1 , then r(S) CV and
2

vice versa. For the sake of brevity, we write f(i) for r(Ji3).

For any x €3 Iv I and any S;V, we let x(S) (xi:icS).
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Next we state the linear system defining the PMS polyrope of G, i.e.,

the convex hull of X.

Theorem 3.1. Let P be the convex polytope consisting of those

x e RIV I satisfying

(3.1) 0 < xi < l, icy

(3.2) x(V1) - x(V2) 0

and

(3.3) x(S) - x(r(S)) < 0, V SCV.

Then P cony Z.

Proof. It is easy to see that cony Z P. For let x be any vertex

of cony Z; then x is the incidence vector of some T €eM, hence (3.1) holds

trivially. Further, (3.2) is the requirement that IT nvl . ITnV21, and

(3.3) simply states that for any SCV1 , T must contain at least as many

nodes of f(S) as of S. Both of these requirements are readily seen to be

necessary conditions for < T > to have a perfect matching, and together they

constitute the "easy" part of the well-known Knig-Hall theorem [11], (6].

To prove the converse, namely that P cconv Z, we will show that

every vertex of P belongs to Z. This will be done by showing that for

any vector c - (ci:iGV) of real node costs there is an optimal solution x*

to the linear program

(L) maxtcxlx c P),

such that x* g X. Since every vertex of P is the unique optimal solution

to such a linear program for some c, this will give the result.

We define a vector Z = (Zij:(iJ)gE) of edge costs by letting -iJ= c i + C

for all (i,j)¢E. For any matching MCE, if S is the set of nodes covered

by M, then M is a perfect matching in < S >, and
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(3.4, X(cij: (iJ)cM) f £(ci:icS).

Conversely, for any S 01 and any perfect matching M in < S >, M is alsoII
a matchiug in G, and (3.4) holds. Therefore the problem of maximizing cx

over x e X can be solved by finding a maximum-weight matching (in terms of

the edge-weights c) in G.

Let M* be such a matching, and let x* be the incidence vector of the

node set S* covered by M*. We will show that x* is an optimal solution to

the linear program (L), by constructing a feasible solution to the dual of

(L) having the same objective function value as (L).

Since edge-variables are two-indexed, we amend our notational con-

ventions by writing, for S, TQV, u(S,T) - E(ui:iCS, juT), and u(i,T) = u((i], T),

u(S'j) = u(S,.0]).

The graph C being bipartite, the incidence vector u* of the matching

* is an optimal solution to the linear program

max cu

(L1) u(i,V2) 1 1 iV 1

u(Vlj) < 1 jCV2

u>O

whose dual is

min t(VI) + t(V2)

(D 1 )  t i  + tj > Ci (i,j)cE

t >0

Let t* be an optimal solution to (D 1 ). By linear programming

duality,



(3.5) E~c 1 j:(iii)EM*) -t*(V1) + * 2)

We now write down the linear program (D), dual to (L)-

Min Y(V) + y(V)

(3.6) Yi+ E(Z S:SQVi. lAS) c C1  itV

(3.7) y . z - SVI (ssvi r(S)) 2 c is v 2

(3.8) yi 0, 1 , l'J CV2

(3.9) z 20, S WVi; v I unconstrained.

Now let 4 - for ieV,, yj = t* for and zS 0 for all S QV1 .

Then (3.8) - (3.9) are satisfied, and

(3.10) y*(V 1) + y*(V2) - t*(Vl) + t*(V2)

M (c11 :(ij)l,*) =cx*.

N~ext we will describe a procedure for redefining the value of zSfor

certain subsets S V 1in such a way as to satisfy (3.6)-(3.7), without changing

the value of any y*. Therefore, the vector (y*, z) obtained in this way will

be the optimal solution to (D) required for the completion of our proof.

At all stages of the procedure, the vector (y*, z) will satisfy the

following two symmetric properties:

(3.11) If for some ieV 1

4* + E~ S eS-liS) =c~ - C for some a > 0,



then for every jcr(i),

(Zs:S-Vi9 Je(S)) > c. + C.
- "- V

(3.12) If for some jcV 2

y• - (Zs:S-V I jer(S)) cj - C for some e > 0,

then for every ier(j),

y* + (zs:ScVI , itS) 2 c, + C.,i

These conditions state that if the current solution violates the

inequality associated with some node by an amount e, there is a surplus

of at least c at every adjacent node. By the initial definition of (y*, z)

and in view of the inequalities t* + t* > conditions (3.1l)-(3.12)
i j - ii'

are satisfied initially.

Define

s o = (iCV1lyi + E(zs:S-VI, its) < c 3,

To = (jCV21 - Z(,s:S V1 , jCr(s)) < cjl.

Note that by (3.11) and (3.12), no itS and JeT are adjacent.o o

If at any stage of the procedure S = To 0, then (3.6) and (3.7)0 0

are satisfied and we are done. If S # 0 , let s = 0 and perform Reduction 1.0

IfS 0 but T # 0, let t - 0 and perform Reduction 2.0 0

Reduction 1. Let

= mn ci - Y. - E(zs:SQVl9 itS)
i S

s
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and define zS  c(> 0). Then (3.11) and (3.12) are still satisfied

(since (3.11) was satisfied before), but the set

s,+ i {iVljY + E (zs:S V1 , is) < ci

is a proper subset of Ss

If S + 1 , Reduction I is complete; otherwise set s - s + I and

repeat Reduction 1.

Reduction 2. Let

rin c - y + E (zs:S aV1 , jtF(S)).

Then e > 0. Define z - c, t -V\r(Tt), and z- z- +C. Note

1 1 1 t S
that the effect of this change is to decrease c + Z(Zt:S QV I , jer(S))

by c for JeTt and to leave it unchanged for JcV2\Tt, and also to decrease

Yi + E(zs:S V1I isS) - c i by c for ic (Tt) but to leave it unchanged for
i SV\ (Tt )

Conditions (3.11) and (3.12) still hold (since (3.12) was satisfied

before), and the new z S still satisfy (3.9); but the set

T+ - 2y- E(Zs:SgVI, jer(S)) < c

is a proper subset of T t .

If Tt+I = 0, Reduction 2 is complete; otherwise set t - t + 1 and

repeat Reduction 2.

After at most ISol < jV11 iterations of Reduction I and at most

ITo _1< IV2 1 iterations of Reduction 2 we obtain a vector (y*, z) satisfying

(3.6)-(3.9), and thus the proof of the theorem is complete.j

At this point some remarks are in order.

-2



First, there is a certain lack of symmetry in the linear system

(3.1)-(3.3) defining cony Z, in that it contains inequalities only for sub-

sets S of V1 . but not for subsets T of V The analogous inequalities for
2'

subsets of V2 would be

(3.13) x(T) - x(r(T)) < , V TCV 2.

These are clearly valid and could have been included in the system, but

they can also be derived from (3.1)-(3.3). For if TQV 2 and we define

S a V1\r(T), then F(S) QV 2\T; and by subtracting (3.2.) from the inequality

x(S) - x(r(s)) < O, we obtain x(V2 V\(S)) - x(r(T)) _< 0. But since

r(S) aV 2\T implies TQV2\r(S), and since x > 0, this last inequality

implies x(T) - x(I(T)) < 0.

If we had included the inequalities (3.13) in our system defining

cony X, then Reductions 1 and 2 could have been made completely symmetric

by using the new dual variables that would have been introduced.

Second, suppose S V 1 is such that the graph < S U I(S) > is dis-

connected, with components < SkUr(Sk) >, k = 1,...,q. Then the inequality

x(S) - x(r(S)) s 0 is the stn of the q inequalities x(Sk) - x(E(Sk)) < 0,

k = 1,...,q, hence redundant. Now suppose < SUr(S) > is connected and K is the

node set of the component of G containing < SU1(S) >, with Ki = KflVi, i = 1,2,

but the graph < (K1\S) U (K2 Vr(S)) > is disconnected, with components < Tk >,

k k
k - 1,...,q. Let Ti = T fl, i - 1,2. Then for k = 1,...,q, we have

r(T1US) QTkUr(S), or else removing the node set SUr(S) from G would not

make < T UT 2 > a maximal connected subgraph. Also, r(T US)T kUr(S), or
1 21 2

else < Tk k > would not be connected. Thus we conclude that F(Tk US) Tk u r(S).
1 UT 2 w n 2n.



12

But then adding the q inequalities x(T US)- xM(r(TkUS)) <, k 1,...,q,

and subtracting (q - 1) times the equation (3.2), yields the inequality

x(S) - x(r(S)) < 0, which is therefore redundant.

We have thus shown than Theorem 3.1 remains true if (3.3) is replaced

by

x(S) - x(r(S)) < 0 for all S CV 1 such that the graphs

(3.3') < S U r(S) > and <(K1 \S) U (K2 \r(S)> are connected, where < K > is

the component of G containing < SUf-(S) > , and Ki = KrVi, i = 1,2.

Third, note that if c is integer valued, then so is ', and thus t*

can be chosen to be integer valued. Then each iteration of Reduction 1 or

2 will result in integer e and hence in integer valued (y*, z). Thus for

any integer valued c, the linear program (D), dual to (L), has integer

optimal solutions. Thus our linear system definin; the PMS polytope of

a bipartite graph is totally dual integral. (This concept was introduced

by Hoffman [9) and used extensively by Edmonds and Giles [5]. See also

Schrijver [121 .)

Fourth, if we set ci = I for all ieV1 and c 0 for all JCV2 , then

the value of (an optimal solution to) (L), and hence of (D), is the cardi-

nality of a maximum matching in G. Now suppose G has no matching that covers

all ieV; then if (y*, z*) is an optimal integer solution of (D),

y*(V 1 ) + y*(V )(- mxcxlx g P)) < 1V11.

Since each yi is a nonnegative integer, this implies that y - 0

for some ieV1. But since (y*, z*) must satisfy (3.6), there must be some

S CV1 such that z* > 0. Now suppose the optimal solution (y*, z*) is
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chosen such that the number of positive components of z* is minimum, and

let ScV be such that z* > 0. Then ISI > 1r(S)1; for if not, then

by adding z* to yi for i¢S, subtracting z* from y* for jc17(S), and then

setting zS 5 0, we could obtain a new optimal solution to (D) with fewer

positive components of z, a contradiction. Thus we obtain the hard part of

the K1nig-Hall Theorem, namely that if G = (V1 UV2, E) has no matching that

covers all of V1, then there exists SQV1 such that 15l > lr(S)1. Furthermore,

this last result combined with our second remark gives a strengthened version

of the hard part of the K nig-Hall Theorem: for G such that IV11 = 1V21 to
have a perfect matching, it is sufficient that the condition IsI j lr(s)l be

satisfied for every S QV 1 such that < S UF(S) > and <(KI\S) U (K2\f(S))> are

connected, where K is the node set of the component of G containing < S UF(S) >,

and Ki - KnVi, i = 1,2.

Fifth, any optimal solution (y*, z*) to (D) can be seen to have the

following property. There exists a nested sequence of sets 0 Un CUnl C ...

C U oC C V 1, such that for any SCV1 , z* > 0 if and only S =U i for some

i¢[O,...,n). This is so because if we did s iterations of Reduction 1,

we will have defined sets 0 CS C CS 1CS If we did t iterations

of Reduction 2, we will have defined sets T 0S 1... S t' Further, from

(3.11) and (3.12), S 09 . Combining these sequences gives the claimed

sequence (Ui:i - 0,1,...,n).

Finally, we have shown that for any optimal solution t* to the

node covering problem (D1), there is an optimal solution (y*, z*) to (D)

for which y* = t*. Of course the converse is also true: if (y*, z*) is

an optimal solution to (D), then setting t* M y* gives an optimal solu-

tion to the node covering problem (D1).
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4. An Alternative Derivation via Projection

In this section we give an alternative derivation of the linear system

defining the PMS polyhedron of a bipartite graph, based on a polyhedral

interpretation of Benders's partitioning theorem [1]. This approach is of

more general interest than its particular use in this paper, since it provides

a technique for projecting a polyhedron in Rn, or some (not necessarily

n n
polyhedral) subset of a polyhedron inR , into some specified subspace of]Rn .

To be specific, let Q be an arbitrary subset of]Rq, and let

Z = I(u,x) cPJq Au + Bx <b, u >0, x c Q)

where A, B and b are m x p, m x q, and m x 1 matrices, respectively, such

that Z 0 0. The protection of Z into the subspace of the x-variables is

defined as

X = (x C q there exists ucR p such that (u,x)CZ].

We are interested in describing the set X in a way similar to Z, i.e., by

a set of linear inequalities plus, of course, the condition x e Q. The

following theorem accomplishes this.

Before stating the result, we recall that a polyhedral cone C is the

intersection of a finite number of halfspaces through the origin, and a

pointed cone is one of which the origin is an extreme point. A ray of a

cone C is the set R(y) of all nonnegative multiples of some yeC, called

the direction (vector) of R(y). A vector y¢C is extreme, if for any Yl'

y2cC, y -I(yl+ y2 implies yl, y cR(y). A ray R(y) is extreme if its

direction vector y is extreme. A pointed polyhedral cone has a finite

number of extreme rays, and is the conical hull of its extreme rays.

Of course, for every nonzero x € R(y), we have R(x) = R(y) and consequently

every cone that contains more than the origin has an infinite number of
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extreme direction vectors. However the smallest set of vectors of which

a cone is the conical hull, consists of one direction vector from each

extreme ray.

For a cone C we let extr C denote such a (finite) set of extreme

direction vectors. Note that ovtr C is uniquely determined up to positive

multiples.

Theorem 4.1. Let Z and X be defined as above, and let

W - i(veJ7vA > 0, v> 01.

Then

X - jx cRqlj(vB)x < vb, If ve extr W; x e Q3.

Proof. The polyhedral cone W is a subset of R+, hence pointed.

Therefore W is the conical hull of its extreme rays, and any x el q satisfies

the inequality (vB)x < vb for every extreme direction v of W, i- and only

if it satisfies it for all veW.

Now let x e X; then x e Q and there exists u]Rp such that u > 0

and A7u + Bx < b. Further, let yeW; then vBx < vb - vAu < vb, since u > 0 and

vA > 0 imply vAu > 0. Thus (vB)x < vb, V ve extr W.
4q

Conversely, suppose i € R satisfies x c Q and (vB)x < vb, V ve extr W.

Then there exists no vcR m such that vA > 0, v > 0 and v(b - Bi) < 0.

Therefore, from Farkas's well known Lemma, there exists some s]RP

such that U > 0 and A6 < b - Bi. But then i s X.II

Note that, if W = (0] (like for instance in the case when A < 0), then

X _ (x cjqjx C Q3.

We now turn to our problem of giving a linear characterization of

the PHS polytope of a bipartite graph G. Although we are looking for a

• III I I1"1 -- II i . ... .. . .i---------. ..--
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linear system in terms of the variables xi associated with the nodes of G,

we will start with the much easier task of giving a linear character-

ization in terms of variables associated with both nodes and edges. Such

a linear system of course defines a polyhedron in a higher dimensional

space than the one that we are looking for, however by projecting this

polyhedron into the space of the node variables we will obtain the system

of Theorem 3.1.

Recall that the WMS polytope of G is cony X, where Z is the set of

incidence vectors of perfectly matchable node sets of G. Let, as before,

a variable xi be associated with node i of G, and let a variable uij be

associated with edge (i,j) of G. As in section 3, we write u(S,T) - E(uij:isS , JET),

u(iT) = u(ti],T), and u(Sj) u(S,()L).

It is not hard to see that a 0-1 vector x I v I is the incidence

vector of some perfectly matchable node set of C if and only if there exists

I Elsome integer u6 I  
, such that

u(i,r(i)) - xi = 0 isV1

(4.1) u(r(j),j) - j = 0 j V2

ui1 > 0, (i,j)cE.

Furthermore, since the coefficient matrix of (4.1) is totally

unimodular, the integrality condition on u can be omitted, and the 0-1

condition on x can be replaced by

(4.2) 0 < x i _< 1, iCV.

Thus (4.1) and (4.2) provide a linear characterization of cony Z

in terms of node and edge variables. One way of obtaining a linear char-

acterization in terms of the node variables only, is then to project

the polyhedron defined by (4.1), (4.2) into the subspace of the node variables.
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To this end, we first rewrite (4.1)-(4.2) as a system of linear

inequalities. This can be done in several ways, and we choose to (0) change

the sign of the equations JcV1 ; (0) replace all equations by inequalities

of the form <; and (y) add all the inequalities thereby obtained for icV1

and JsV2, and change the direction of the resulting inequality. This yields

the system

-u(i,r(i)) + xi < 0 isV1

u(r(j),j) - x 0 JcV2

(4.3) -x(V ) + x(V2 ) < 0

uij >0 (ij)sE

0<xi<I isV

which is equivalent to (4.1)-(4.2). Note that the coefficient matrix of

(4.3) is still totally unimodular.

We now apply Theorem 4.1 to this system. The set Q and the matrices

A, B and b that define Z of Theorem 4.1 are in this case as follows:

Q - (x ClvII -x(V 1 )+x(v 2)<0, o<xi< 1, iev];

A is the node-edge incidence matrix of G, with the signs of the

rows indexed by V1 changed;

B is a diagonal matrix of order IVI, with +1 for the diagonal entries

indexed by Vl, and -1 for those indexed by V2 ; and, finally,

b is the 0 vector with IVi components.

Now the cone W of Theorem 4.1 is

v i >0, iCy

is

• -- t
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and in order to project the polyhedron defined by (4.3) into the subspace

of the node variables, we have to characterize the extreme rays of W.

Theorem 4.2. The vector vcW is extreme if and only if there exists

0 > 0 such that either

(o for exactly one i - j,¢V2
(4.4) v i 1

0 for all ieV 1 UV 2 \ j\1

or

(4.5) vi = 
U

0o otherwise

for some S Q V1 such that < S U r(S) > is connected.

Proof. Sufficiency. Let yeW be of the form (4.4), and assume for

the sake of contradiction that v is not extreme, i.e., v - I(v + v2) for

12 1 2
some v ,v2¢W\R (v). Then v v~i = 0, icV1 UV2\{J,3, and vt v2 Zv.Thus

v is extreme.

Now let yeW be of the form (4.5), and again assume that v (vl + v2 )

for some v Iv 2 W. Then v = v2 = 0 for ie(V \S) U (V2\F(S)), and
i 1 2

1 2(46) V + v, 2ot, ics U T(S).

Note that from (4.6), for any ieS, jg?(S), v1 > vi if and only if

ii2 2 k k 12foansuhpi
v i < v J; but the constraints of W imply v i < v j, k-12 o n uhpi

i,j. Hence vi = vrk k- 1,2, for all pairs itS, jer(S); and since < SU :(S) >
k k k~cn

is connected, it follows that v, Mv r(constant), k - 1,2, for all

1 2i,jeSU £(S). Therefore v , v cR(v), i.e., v is extreme.

Necessity. Let v be an extreme vector of W, and let T - ticVlv 1 > 03.

Define S - T nV1 , and consider first the case where S = 0. Then if
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T = with t > 1, and if e denotes the unit vector mRIn I with 1

in position J, we have

v jle. 1 + ... + vt e t

1 2

(v + v),

where v 2v jel , v2 - eJ2 + . + v i ), with vI, v c, and vlAR(v)

v 2R 2(v). Thus if IT) > 1, v is not extreme, contrary to the assumption. We

conclude that if S - 0, then ITI - 1 and thus v is of the form (4.4).

Now consider the case when S # 0. Then F(S) QT nV2 , or else there

exists isS, jeF(S) such that vi > 0, vj = 0, i.e., v violates some constraint

of W. Also, r(S) T V2, or else there exists josV2\r(S) such that v1  > 0.

1 2 0But then for any c satisfying 0 < s < V 1o the vectors v and v , obtainedIi 2
from v by replacing x with v = v + C and v2  v - c, respectively,

0 1 0 O 1 o
satisfy the equation v = _(v + v2), although v1 2 W\R(v), contrary to the
assumption that v is extreme. We therefore have F(S) = TPV2v i.e., T = SU(S).

We claim that < T > is connected. For suppose not, and let K be the

node set of a component of < T >. Then v - I(v + v2 ), where

1 fo icK
-" vi isV1 U V2\K

and

2 r2v icK
vi (v iv 1 U V2 K,

while at the same time v ,v2 CW\R(v), contrary to the assumption that v is

extreme. Thus < T > - < S U (S) > is connected.

Finally, we claim that v, a a, iCT, for some constant a > 0. For

suppose not; then again v I(vl + v2), with vI and v2 defined by
s o; t
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v Imin~vj:JeT3 icT
V.°

0 ieV 1 UV 2"IT

and

2 r2v i - mintvj:JcT] iT
Vi
i i Vy1 UV2\T

1 2

while v ,v eW\R(v), contrary to the assumption that v is extreme.

This proves that if S # 0, then v is of the form (4.5).ji

Having described the extreme rays of W, we can now apply Theorem 4.1

to the system (4.3). The extreme direction vectors of the form (4.4) give

rise to inequalities xi > 0, i¢V2, which are redundant (since they are part

of the definition of Q). The extreme vectors of the form (4.5) give rise

to an inequality X(S) - x(r(S)) : 0 for every S QV 1 such that < S T r(S) >

is connected.

If G is connected, then the inequality x(V1) - x(V2) 0, which can

also be written as x(V1) - x(M(Vl)) 1 0, obtained from the extreme vector

of W that corresponds to S - V1, together with the inequality - x(V1) + x(V2) < 0

of (4.3), gives rise to the equation x(V1) - x(V2) = 0. If G is disconnected

with components < K1 > ,..., < Kt >, where Kt = S iU(S i), i = ,...,t, then

the equation x(V1) - x(V2) = 0 is obtained by first adding the inequalities

x(S1) - x(fr(Si)) < 0, i = 1,... ,t, and then combining the resulting inequality,

x(V1 ) - x(V2) 0, with the inequality - x(V 1) + x(V2 ) < 0 of (4.3).

Thus applying Theorem 4.1 to the system (4.3), we obtain the linear

characterization of the PMS polytope of G given in Theorem 3.1, except for

those inequalities (3.3) such that < S U T(S) > is disconnected, which are

missing. But these inequalities are redundant, as shown in the remarks

following Theorem 3.1, where the system (3.3) was replaced by (3.3').

AMaMt



21

5. A Third Derivation via Lattice Polyhedra

Lattice polyhedra were introduced by Hoffman and Schwartz 110]

(see also 17], [81) as a class of integer polyhedra that generalizes both

matroid polyhedra and bipartite matching polyhedra. We will show that the

PMS polytope of a bipartite graph can also be expressed in this form.

A lattice vZ is a partially ordered set closed under two associative

and comutative binary operations, A and V, and such that

for a,b.d., a A b < ab < a v b;

(5.1)
a <b a - a ,b, b a V b.

To define a lattice polyhedron, we further need a set 14 and a

mapping f:Z -- 2U that satisfies for every W, W2, W3 CZ,

(5.2) W :5W 2 _W3 implies f(WI) nflW 3 ) f(W2)

(5.3) f(W1) n f(W2 ) Q f(Wl V W2) n f(w1 A W2)

(5.4) f(W1) U f(W2) a f(W1 V W2) Uf(WI A U2).

and a submodular function r:;?- - + (the set of nonnegative integers). The

basic result on lattice polyhedra [101 can then be stated as follows.

Theorem 5.1. ?or any nonnegative integer dC R I , the convex poly-

hedron whose points are those x eIR141 satisfying

(5.5) 0 <x<d

and

(5.6) E(xi:ief(W)) < r(W), W W

has only integer vertices. Moreover, the linear system (5.5), (5.6) is

totally dual integral.
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To apply this theorem to our case, we let be the collection of all

WCV2 ordered by set inclusion, and we define the operations v and A to

be U and n, respectively. Then z is well known to be a lattice. We let

= V, the node set of G.

For W c Z we define f(W) S UW, where S = F'(W) is the maximal
subset of V such that F(S) rW. Equivalently, S consists of all those

nodes of V1 adjacent only to nodes in W.

Now for Wi eu, i = 1,2,3, condition (5.2) requires that W CW 2CW3

imply

(W1U sI) n (w3 us 3) r (W2 US2),

where S: :: :t(W ), i - 1,2,3. Since W CW2CW3 implies S CS2CS3, this

condition is satisfied.

Further, for Wi e, i - 1,2, (5.3) requires that

(W U SPn N(w2 u s 2 ) Q W 1n w2 Ur'I(w1 n w 2) ,

where, again, Si=F (Wi), i = 1,2. Since (W1US I) n (W2 US 2) = (WIlnW 2) U (SINS,),
and since it is easily checked that S n S2 = FI(W n2 , this requirement

is also satisfied.

Finally, for Wi c€L, i - 1,2, (5.4) requires that

W 1 US I UW 2 US 2 W 1 UW 2 Ur" I(wI UW 2),

Since S1 U S2 Q F(W 1 UW 2), this condition is also satisfied.

Next, we have to choose a nonnegative integer function r on :-, that

is submodular. For W c€, we define r(W) = IWI, which clearly satisfies

this requirement (and is in fact modular).
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We can now apply Theorem 5.1 to derive our linear characterization

of the PMS polyhedron of a bipartite graph. To this end, we set d. 1,

ieV, in (5.5), and use the above definitions to rewrite (5.6) as

(5.6') x(r'W(W)) + x(W) < (Wt, WQV 2.

If we now complement the variables xi, ieV2, i.e., define new

variables x' = xi , icV1 , xi = 1 - xi, iCV2, then the system (5.5), (5.6')

becomes

(5.7) 0 < x' < I, ieV

(5.8) x '(r'-(w)) - x'(W) <0, o wv 2

and Theorem 5.1 asserts that the convex polytope P* defined by (5.7), (5.8)

has integer vertices.

The linear system of Theorem 3.1 differs from the above in three

respects. First, there is an inequality (5.8) for every W9V 2, not just

those for which W = r(S) for some S QV I. Suppose that W # F(S) for any

SaV1 and let W' = r(r 
1 (W)). Then W' CW and the inequality (5.8) for W'

is x'(-1 (W)) - x'(W') < 0, which together with (5.7) r-plies the inequality

(5.8) for W. Hence all such inequalities can be dropped without affecting

the integrality of the polytope.

Second, (5.8) does not contain the inequalities (3.3) corresponding

to sets SCV 1 such that F(S) = r(T) for some proper superset TQV 1 of S.

But if such T exists, then the graph < (K1\S)U (K2\P(S)) > is disconnected,

where < K > is the component of G containing S and T, and Ki = K nV i , i = 1,2.

This is so because the nodes in T\S 0 0 are not adjacent to any node in

K 2\(S) = K 2\F(T). As discussed in the remarks following Theorem 3.1,

the inequalities (3.3) corresponding to such sets SCV 1 are redundant.
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Third, the equation (3.2) is not present in the system (5.7), (5.8).

This is a genuine difference between the two polytopes, P defined by the

system (3.1)-(3.3), and P* defined by (5.7), (5.8). However, the equation

(3.2) defines a face of P*, and since the vertices of a face are vertices

of the polyhedron, it follows that P also has integer vertices. This provides

the third proof of the fact that P - cony Z.

6. Facets of the PMS Polytope

In this section we address the question as to which of the inequalities

defining the PMS polytope of a bipartite graph are ossential. This is

obviously a matter of practical interest, as the number of inequalities in

the system (3.3) is rather large.

The facets of a polyhedron P are its maximal (relative to inclusion) non-

empty proper faces. If dim P is the dimension of P, then the dimension of a fact

of P is dim P - I. An inequality ax S is called facet-inducing (for P),

if it is satisfied by all x e P, and the polyhedron Pfnlxlax = o is a

facet of P, i.e., has dimension dim P - 1.

In the remarks following Theorem 3.1, we have pointed out that some

of the inequalities defining the PS polytope of G are redundant, and that

the system (3.1), (3.2), (3.3) can in fact be replaced by the smaller system

(3.1), (3.2) and (3.3'). In this section we show that most of the inequalities

of the latter system are essential, i.e., facet-inducing.

First, we have to determine the dimension of our polytope. Let again

P denote the set of x CIRIv I satisfying (3.1)-(3.3), shown in Theorem 3.1

to be the PMS polytope of G - (V1 UV 2, E).

The equality set of the system (3.1)-(3.3) is the set of those

members that are satisfied with equality by all x c P. A basis of the

equality set is a maximal subset whose coefficient matrix is of full row

rank.
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For any graph G, we define i, the set of adjacency vectors of G, to

be the set of all incidence vectors of pairs of nodes which are joined by

an edge. Thus a has as many elements as G has edges, and each x e has

exactly two components equal to 1 and all other components equal to 0. The

following Lemna will be useful in the rest of this section.

Lemma 6.1. Let F be the set of adjacency vectors of a forest

F = (V,E) with k components. Then F is linearly independent, IJF = IVI - k,

and every x e F satisfies x(K1) x(K2) for every component (tree) < K >

of F, where K and K2 are the parts of K.

Proof. Elementary.1I

Theorem 6.2. Let X be the set of components of G = (V1 UV,, E), and

for every < K > eX, let Ki = KV, i = 1,2. Then the system

(6.1) x(K ) - x(K2 ) = 0, i < K > gX,

is a basis of the equality set of (3.1)-(3.3).

Proof. It is clear that the equations (6.1) are linearly independent

and belong to the equality set of (3.1)-(3.3). Let F be an edge maximal

spanning forest of G, and Y the set of its adjacency vectors. Since every

pair of adjacent nodes is perfectly matchable, Q. By Lemna 6.1, V is

linearly independent and each x c F satisfies (6.1). Since i l = lVi - k,

where k = lXi, no basis of the equality set can contain more than k equations.

But k is the number of equations in (6.1), so (6.1) is a basis.l

Corollary 6.3. If G = (V1 UV2, E) has k components, dim P l JVi - k.

Proof. The dimension of a polyhedron in]RIVI is IVI minus the rank

of the equality set.1I

We now turn to the identification of facet inducing inequalities.

The following result will be of use in this task. We recall from section 2
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the definitions of 57(G) as the collection of perfectly matchable node sets

of G, and Z(G) as the set of incidence vectors of such node sets.

Theorem 6.4. For any SQ V1 , the equality

(6.2) x(S) - x(r(S)) = 0

is satisfied by the incidence vectors of precisely those T '7(G) such that

(6.3) (V1\s, r(s)) nlm = o

for every perfect matching M of < T >

Proof. Let x be the incidence vector of some T e77(G). Clearly, x

satisfies (6.2) if and only if Is nT I(s) nTI. Now if (6.3) holds for

at least one perfect matching M of < T >, then M matches the nodes of S nT

with those of P(S) nT, hence x satisfies (6.2). On the other hand, if (6.3)

is violated by some perfect matching M' of < T >, then M' matches the nodes

of S AT with a proper subset of the nodes of r(s)nT, hence IS nT < jr(S) TJ

and (6.3) is violated by x. We conclude that (6.3) holds for at least one

perfect matching of < T > if and only if it holds for all perfect matchings

of < T >; and this is the case if and only if the incidence vector x of T

satisfies (6.2).1I

For any S CV 1, let GS denote the graph obtained from C by removing

the edge set (V1\S,r(S)), i.e., let

GS M < sUr(S) > U < (Vl\S) U (V2\F(S)) >

Then Theorem 6.4 implies

Corollary 6.5. For any SQVl,

Z(G) n txlx(s) - x(r(s)) o] Z(cs).
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Theorem 6.4 and Corollary 6.5 essentially say that for any S gVI,

the polyhedron {x e Pjx(S) - x(T(S)) = 0) is itself a PMS polytope, namely

the one for the subgraph GS of G obtained by deleting the edges in (V1\S,N(S)).

We are now ready to state the main result on facets of cony X(G),

i.e., of P.

Theorem 6.6. Let 0 S V1 . Then the inequality
E

(6.4) x(S) - x(r(s)) < 0

is facet inducing if and only if Gs has exactly one more component than G.

Proof. The inequality (6.4) is facet inducing, i.e., the set

Pn (xlx(S) - x(r(S)) = O) is a facet of P, if and only if it has dimension

d = dim P - 1. From Theorem 3.1 and Corollary 6.5,

P n xlx(S) - x(r(s)) - o3 -

= cony Z(G) n (xix(S) - x(r(s)) = 0) = cony /.(3s )

From Corollary 6.3, dim P - - k, and dim conv Z(G) IVI - ks,

where k and ks denote the number of components of C and GS, respectively.

Thus (6.4) is facet inducing if and only if kS - k + 1.1

At this point there is at least one feature of Theorem 6.6 that requires

immediate comment. In the remarks following Theorem 3.1 we have stated that

any inequality (6.4) such that < S U r(S) > is disconnected, is redundant;

yet from Theorem 6.6, such an inequality may still be facet-inducing, pro-

vided that the graph GS has exactly one more component than G, a condition

that is not incompatible with < S Ur(S) > being disconnected. So it seems

that some facet inducing inequalities are redundant. This is indeed the

case, due to the fact that dim P < JlV, i.e., that the equality set of

the system (3.1)-(3.3) is nonempty. Every one of the equalities satisfied

by all x c P can be added, after multiplication with some arbitrary constant,
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to any of the inequalities of (3.1)-(3.3), to yield another valid inequality.

This way infinitely many inequalities may induce the same facet of P, where-

as in any minimal linear system defining P, every facet of P is obviously

represented by only one (facet inducing) inequality. Thus we have to

address the question as to which among the facet inducing inequalities of

(3.1)-(3.3) induce distinct facets.

Before answering this question, it will be useful to restate Theorem

6.6 in the following slightly different form.

Theorem 6.6'. The inequality (6.4), where 0 # S V1, is facet

inducing if and only if G has a unique component < K* > such that 0 0 S* K*11

where S* =SflK* and K* = K*Vi, i - 1,2, and the graphs < S*Ur(S*) >

and < (Kt\S*) U (K&\t(S*)) > are connected.

This form of the theorem (which can easily be derived from the other

one) implies that for all components < K > of G other than < K* >, either

Sr)K # 0 or S nK - VI .

Theorem 6.7. Facet inducing inequalities

(6.5) x(S) -x(r(S)) < 0

and

(6.6) x(T) - x(r(T)) < 0

induce the same facet of P if and only if G has a component < K* > such that

(6.7) 0 . SAK* - TnK* # K*nVI .

Proof. Since (6.5) and (6.6) are facet inducing, if G has a component

< K* > satisfying (6.7), then K* is unique, and x e P satisfies (6.5) with

equality if and only if it satisfies (6.6) with equality, i.e., the two

inequalities induce the same facet.
.1
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Conversely, if no such < K* > exists, then there exists ueVll , vET(S),

such that (u,v) sE and either u,vcT U r(T), or u,vAT U £(T). Then the adjacency

vector of (u,v] satisfies (6.6) with equality, but (6.5) with strict

inequality; i.e., the two inequalities induce different facets.J

We now turn to the inequalities (3.1).

Theorem 6.8. The inequality xv > 0 is facet inducing if and only

if v is not a cutnode or an isolated node of G.

Proof. If v is neither & cutnode nor an isolated node of G, there

exists an edge-maximal spanning forest F of G in which v has degree 1.

Then the set F of adjacency vectors of F contains a unique i such that i 1.i1

Therefore, using Lmea 6.1, FU (O]\(ti is a set of dim P affinely independent

members of P, all satisfying xv - 0. Thus, denoting Q - (x c Pixy = 0], we

have dim Q > dim P - 1. On the other hand, i c P\Q, hence Q is a proper face

of P; therefore dim Q - dim P - 1 and so xv 0 is facet inducing.

Conversely, if node v is isolated, then xv - 0 for every x e P, and

thus xv >0 does not induce a proper face. If v is a cutnode, let L be

the node set of a component created by deleting v, and let L' F LU v].

Then every x a P such that x v - 0 also satisfies x(L'flV1 ) - x(L' nV2) = 0.

But let i be the incidence vector of Lv,w] for any weL adjacent to v. Then

satisfies x(Lenv1) - x(Linv 2  0, but xv # 0. Hence the inequality

xv > 0 does not induce a maximal proper face of P.11

Theorem 6.9. Facet inducing inequalities xv 2!0 and x(S) - x(r(S)) < 0

define the same facet of P if and only if (v] = K*\S and r(v) Q (Kt($S),

where K* is the node set of the unique component of C satisfying

0# S flK* K* (- KflV P.

Proof. If the conditions hold, then the inequality xv 2 0 can

be obtained from x(S) - x(r(S)) _5 0 by subtracting the equations

x(K1) - x(K2) - 0, where Ki - KnVi, i - 1,2, for all those components
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< K > of G such that KI rS # 0. Therefore the two inequalities induce

the same facet. The converse can be shown by an argument analogous to the

one used to prove the necessity of Theorem 6.7, and the details are omitted. i

Theorem 6.10. The inequality x < 1 is facet inducing if and onlyV -

if v either has at least two neighbors, or belongs to a two node component

of G. In the first case, no other inequality (3.1) or (3.3) induces the

same facet. In the second case, only the inequality xu < 1, where u is

the other node of the component containing v, induces the same facet as

I <1.V -

Proof. Sufficiency. If v has two distinct neighbors, u and w,

define x by I2 if i - V

x, I if i - u or v

if i6V\(u,v,w].

Then xP, but ; satisfies all the constraints (3.1)-(3.3) except

for the inequality xv < 1. Therefore this inequality is essential, hence

facet inducing, and no other inequality of (3.1)-(3.3) induces the same facet.

If v belongs to a two node component, with u the other node, define

by

(2 if i - u or v

0 -if icv\(u,vl,

Then again i A P, but i satisfies all the constraints of (3.1)-(3.3)

except for x > 0 and x > 0. This shows that at least one of these two

inequalities is essential. But the equation (6.1) for the component of G

containing u and v gives xu - x3 for all x c P; so x c P satisfies xu - 1

if and only if it satisfies xv - 1. Therefore xu < 1 and xv  1 are both

facet inducing, and they induce the same facet.

.1l
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Necessity. If v is an isolated node, x = 0 for all x c P and the

inequality xv < 1 does not induce a nonempty face of P.

Suppose now that v has a single neighbor u, and u has a neighbor

w A V. If vCV1 , the inequality (3.3) for S = {v) is xv  xu < 0, or xv - u

If vcV2, this same inequality, though not part of (3.3), can be derived as

the inequality (3.13) for T = Lv). Therefore every x e P that satisfies

xv  1 also satisfies xu  1. But the converse is not true, since the

adjacency vector x of [u,w] belongs to P, while x = 1, x = 0. Therefore
u v

the inequality xv < 1 does not induce a maximal proper face of P.11

From the last four theorems it follows that the set of constraints

(3.1), (3.2), (3.3') comes very close to, though is generally not exactly,

a minimal linear system defining P. To make it minimal, one has to remove

- every inequality xv > 0 such that v is either an isolated node

or a cutnode;

- every inequality x < 1 such that v has less than two neighbors and

does not belong to a two node component; and, finally,

- every inequality x(S) - x(r(S)) < 0 such that IKt\SI - 1 and

r(K*\S) Qr(Kt nS), where K* is the unique component of G such

that o # K*nS # K* (- K**V).

This still leaves a large number of inequalities, that can be

exponential in the size of G. The following example illustrates the

contents of this section and also is a case where the minimal defining

system for P is exponential.

Let Gn be the graph of Fig. 6.1, consisting of n pairs of nodes

(u 1 , vi), each pair joined by an edge, plus a node u o adjacent to every

vi , i - 1,...,n, and a node v0 adjacent to every ui, i = 1,...,n. Let

V1 * u0 , ul,...,un), V2  ( Lvo, vl, ...,vn.

L ">.. ..'. ... .. . . . . .. . . .. . .
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u 0  u 1  u 2  un

V0 0 v2  v n

FiR. 6.1

Using the results of this section, we obtain the following minimal

defining system for P:

0 <x 1, uV 1

(6.14)
0 < xv < 1, vCV2

(6.15) x(V1 ) - x(V2 ) = 0

(6.16) x(S) - X(r(S)) 0, S: S 1 \Uo0

(6.17) x - x(v2\(v] <o.

The inequalities (6.14) and the equation (6.15) are easily seen to

be needed. For any nonempty SC(ul,...,un), Vo¢6(S), so < SU r(S) > is

connected; and u0 Vl\S, so < (V1\S) U (V2\r(S)) > is also connected; hence

from Theorems 6.6 and 6.7, the inequalities (6.16) all induce distinct

facets of P. Further, since S V1Mu 0 implies IV 1\SI .2, the facets

induced by these inequalities are also distinct from those induced by any

of the inequalities (6.14) (Theorem 6.9). Finally, since < lUo 0 U(V 2\V 0 )) >

and < (V \u 3) U (v ) > are connected, inequality (6.17) defines a facet of
1 0 0

P, which is easily seen to be distinct from the facets induced by any of

the other inequalities.
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It remains to be shown that the omission of the rELWa..Ling inequalities

of (3.3) is justified. If S - Vl'\uo), then from Theorem 6.9 the inequality

(3.3) induces the same facet as x > 0. Now let uoCS.
011

If S - (uo), we have the inequality (6.17). Now let S # (uo]. Then

n(S) - V2P so < (VI\S) U (V2\I(S)) > is connected if and only if IVI'\S1 : 1.

If IV \SI - 0, then S - V1 and the inequality (3.3) is implied by the equa-

tion (6.15). If VI \S - (u for some i¢il,...,n), then from Theorem 6.9

the inequality (3.3) induces the same facet as x u > 0. This covers all

the cases.

Notice that the number of inequalities (6.16) for G is 2n - 2, hence

exponential in a.

Although the number of inequalities in our linear characterization of

the PMS polytope of a bipartite graph may be large, this characterization is

still computationally useful. Indeed, a linear program whose constraint

set includes the system (3.1)-(3.31) can be solved by generating the in-

equalities (3.3') as needed. However, the development of such a procedure

goes beyond the scope of this paper.
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sets of G. We derive this result by three different approaches, using linear
programming duality, projection, and lattice polyhedra, respectively. The
projection approach is used here for the first time as a proof method in poly-
hedral combinatorics, and seems to have many similar applications. Finally, we
completely characterize the facets of our polytope, i.e., we separate the essential
inequalities of our linear defining system from the redundant ones.
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